SSA Theorem?
[b]Thus far, we've learned several theorems that allow us to conclude 2 triangles are congruent. [br][br]Here's the list of discoveries we've made thus far: [br][/b][br][url=https://www.geogebra.org/m/bM5FkyFK]SAS Theorem[/url][br][url=https://www.geogebra.org/m/Qsk3vDs6]SSS Theorem[/url][br][url=https://www.geogebra.org/m/WKJJ2uPa]ASA Theorem[/url][br]AAS Theorem (easily proven simply by finding the each triangle's 3rd angle and then using ASA Theorem.)[br][br]HL Theorem (For Right Triangles: Easily Proven since we can just use the Pythagorean Theorem to solve for the other leg and then use the SSS Theorem.) [br][br][b][color=#0000ff]Yet MANY students ask, "What about SSA?" [br][br][/color][color=#0000ff]That is, if 2 sides and a non-included-angle of one triangle are congruent to 2 sides and a non-included-angle of another triangle, are the triangles themselves congruent? [br][br][/color]Interact with BOTH applets for a few minutes and see if you can answer this question for yourself. [/b][i][color=#9900ff]As you do, feel free to move the WHITE POINTS anywhere you'd like! [br]Feel free to adjust the "a" and "b" sliders as well. [br][/color][/i]