In the right hand panel the function [math]x^2 + Px + Q[/math] is plotted over the complex plane[br][br][br]The left hand panel shows the [math](P, Q)[/math] plane. The coordinates of the large[br]dot determine the values of [math]P[/math] and [math]Q[/math]. [br][br][br]Varying the values of [math]P[/math] and [math]Q[/math] allow you to explore the real and[br]complex roots of the quadratic.[br][br][br]Why does the dot change color? Where is it red? green?[br][br][br]Can you make a conjecture about a similar construction for cubics? Can you prove it?