Integration

Key Facts
[list][*]Integration is, in essence, the inverse operation to differentiation. It is denoted by [math]\int\ldots\text{dx}[/math][/*][*]In general, [math]\int x^n\text{dx}=\frac{1}{n+1}x^{n+1}+c[/math]  (in other words, [b]in[/b]crease the power and divide by the new power). [b][u]The +c must be included.[/u][/b][/*][*][math]\int ax^n\text{dx}=\frac{a}{n+1}x^{n+1}+c[/math] - eg. [math]\int5x^2\text{dx}=\frac{5}{3}x^3+c[/math][/*][*]A [b]definite[/b] integral is of the form [math]\int_b^a\ldots\text{dx}[/math], where [math]a[/math] and [math]b[/math] are limits, which determines the area under the curve between the point where [math]x=a[/math] and where [math]x=b[/math].[/*][/list]
Interactive Worked Example - Integration

Information: Integration