參考:自己的[url=https://tube.geogebra.org/material/show/id/107240]舊作[/url]與[url=https://www.evernote.com/shard/s13/sh/b7d89805-7251-4211-9dba-d2f7f77b9db9/79010e1538bc864b0f1f2bd697e2f222]數學筆記[/url][br][br][b][color=#ff0000]Bezier[/color][/b][color=#0000ff][ ][/color] 製作重點:[br][br][list=1][*]獨立的點集:[color=#0000ff]pts = { (0,0), (1,1), (0,2) }[/color][/*][*]計算點的數量:[color=#0000ff]n = [url=https://wiki.geogebra.orgen/Length_Command]Length[/url][pts][/color][/*][*]所需的多項式:[color=#0000ff]xterms = [url=https://wiki.geogebra.orgen/Sequence_Command]Sequence[/url][[url=https://wiki.geogebra.orgen/BinomialCoefficient_Command]BinomialCoefficient[/url][n - 1, k] (1 - x)^(n - 1 - k) x^k, k, 0, n - 1][/color][br][/*][*]貝式曲線的參數式:[color=#0000ff]fx(x) = [url=https://wiki.geogebra.orgen/Sum_Command]Sum[/url][[url=https://wiki.geogebra.orgen/Zip_Command]Zip[/url][x(P) term, P, pts, term, xterms]][/color][/*][*][color=#0000ff][/color]貝式曲線的參數式[color=#0000ff]:fy(x) = Sum[Zip[y(P) term, P, pts, term, xterms]][/color][/*][*]畫貝式曲線:[color=#0000ff]a = [url=https://wiki.geogebra.orgen/Curve_Command]Curve[/url][fx(t), fy(t), t, 0, 1][/color][/*][*]做自製工具 [color=#ff0000][b]Bezier[/b][/color][color=#0000ff][ ][/color] (輸入:pts、輸出:a)[/*][/list]