En la construcción, podemos ver la interpretación gráfica de una inecuación de primer grado y dos incógnitas.
La inecuación [math]ax+by+c\ge0[/math] nos pregunta por los puntos del plano que cumplen la desigualdad.[br]Para resolver, representamos gráficamente la recta [math]ax+by+c=0[/math] con una tabla de valores, que aparece a la izquierda en la construcción; y la recta aparece representada en color rojo.[br]La solución es un semiplano que contiene al [math]\left(0,0\right)[/math] si este punto cumple la inecuación, o el semiplano que no contiene al [math]\left(0,0\right)[/math] si este punto no cumple la inecuación.[br]En caso de que la recta pase por el [math]\left(0,0\right)[/math], evaluamos la inecuación en otro punto por el que no pase la recta.[br][br]Si movemos los deslizadores, modificamos los valores de [i]a[/i], [i]b[/i] y [i]c[/i] y observamos las distintas inecuaciones y sus soluciones. Observa que si hacemos [math]a=0[/math] y [math]b=0[/math] simultáneamente, no tenemos ninguna recta que representar y en la tabla de valores aparecen sendas interrogaciones. En ese caso nos queda la inecuación [math]c\ge0[/math] cuya solución es todo el plano si c es positivo o no hay ninguna solución si c es negativo.[br]