[color=#000000]In the applet below, the [/color][b][color=#1e84cc]blue ray[/color][/b][color=#000000] is said to be an [/color][color=#1e84cc][b]angle bisector[/b][/color][color=#000000] of [/color][b]angle [i]BAC[/i][/b][color=#000000]. [br][br]The [/color][b]gray slider[/b][color=#000000] adjusts the entire measure of [/color][b]angle [i]BAC[/i][/b][color=#000000]. [br][/color][color=#000000]The [b]black slider[/b] dynamically illustrates what it means for a [/color][color=#1e84cc][b]ray[/b][/color][color=#000000] to [/color][color=#1e84cc][b]bisect[/b][/color][color=#000000] an angle. [br][br][/color][color=#000000]Interact with this applet for a few minutes, then answer the questions that follow. [/color]
[color=#000000]From what you've seen, describe what it means for a [/color][color=#1e84cc][b]ray[/b][/color][color=#000000] to [/color][color=#1e84cc][b]bisect[/b][/color][color=#000000] an angle. [/color][color=#ff0000][i][color=#980000]In your description, avoid using the words or phrases middle, down-the-middle, half[/color][/i][color=#000000][i][color=#980000].[/color][/i] [br][/color][/color]If you need a hint, refer to terminology seen from [url=https://tube.geogebra.org/m/evXSUG9J]this worksheet[/url].
[color=#000000]Use the [b]Point on Object[/b] tool to plot a point F [/color][color=#1e84cc]anywhere on the [b]angle bisector[/b][/color][color=#000000]. Then use the [b]Angle[/b] tool to find and display the measure of angle [/color][i]BAF[/i][color=#000000] and [/color][i]CAF[/i][color=#000000]. [/color]
[color=#000000]Did the measure of the angles BAF and CAF reflect (i.e. illustrate) your response to Question 1? [/color]
Open the [b]Angle Bisector Construction[/b] activity and complete it.