This applet illustrates the approximation of a two-variable function with a Taylor polynomial at a point [math]P[/math].[br][br][list=1][*]Set the point [math]P=\left(x_0,y_0\right)[/math] where to approximate the function [math]f[/math] using the sliders. [/*][*]Check the box First degree Taylor polynomial to plot the Taylor polynomial of order 1 and to compute its formula. Observe that the graph of this polynomial is the tangent plante to the graph of [math]f[/math] at [math]P[/math].[/*][*]Check the box Second degree Taylor polynomial to plot the Taylor polynomial of order 2 and to compute its formula. Observe that this polynomial approximates better the function than the first degree Taylor polynomial near [math]P[/math].[/*][/list]Enter another function and repeat the previous steps.
Get more information about Taylor polynomials for several-variables functions at [url=http://aprendeconalf.es/calculus/manual/derivatives-n-variables.html#Taylorpolynomials]http://aprendeconalf.es[/url].