Unit Circle: Complementary Angles

This sketch shows the relationship between an angle [math]\theta[/math] and its complement, [math]90\degree-\theta[/math]. Drag [math]P[/math] around the circle and notice what happens to [math]P'[/math]. How are the trigonometric ratios of the angles related?
1.
What is the geometric relationship between [math]P[/math] and [math]P'[/math]?
2.
The coordinates of [math]P[/math] are [math]\left(\cos\theta,\sin\theta\right)[/math]. From the relationship described in question 1, what are the coordinates of [math]P'[/math]?
3.
Since [math]P'[/math] is a point on the unit circle corresponding to the angle [math]90^\circ-\theta[/math] in standard position, it has coordinates:
Therefore, for any angle [math]\theta\in\mathbb{R}[/math], we have:[br][math]\sin\theta=\cos\left(90^\circ-\theta\right)[/math][br][math]\cos\theta=\sin\left(90^{\circ}-\theta\right)[/math]
Close

Information: Unit Circle: Complementary Angles