
-
Einführung GeoGebra
-
1. Geometrie
- Die Werkzeugleiste
- Rechteck
- Dreieck mit Umkreis
- Merkwürdige Punkte im Dreieck
- Pointieren
- Dynamisieren
- Kommentieren
- Beweis ohne Worte
- Aufgabe 01
- Aufgabe 02
- Aufgabe 03
- Aufgabe 04
- Aufgabe 05
- Aufgabe 06
- Aufgabe 07
- Aufgabe 08
- Aufgabe 09
- Aufgabe 10
-
2. Algebra
- Mathematische Funktionen
- GGB-Befehle
- Liste von Objekten
- Folge-Befehl
- Skalieren
- Uhr beschriften
-
3. Tabelle
- Wertetabelle
-
4. 3D
- Würfelnetz dynamisch
-
5. CAS
- Gleichung lösen
-
6. Skripting
- Animationsknopf
- Spur, Ortslinie und analytische Kurve
- Animation und Spur
This activity is also part of one or more other Books. Modifications will be visible in all these Books. Do you want to modify the original activity or create your own copy for this Book instead?
This activity was created by '{$1}'. Do you want to modify the original activity or create your own copy instead?
This activity was created by '{$1}' and you lack the permission to edit it. Do you want to create your own copy instead and add it to the book?
Einführung GeoGebra
Georg Wengler, Jul 22, 2015

Eine Einführung in die Komponenten von GeoGebra.
Table of Contents
- Geometrie
- Die Werkzeugleiste
- Rechteck
- Dreieck mit Umkreis
- Merkwürdige Punkte im Dreieck
- Pointieren
- Dynamisieren
- Kommentieren
- Beweis ohne Worte
- Aufgabe 01
- Aufgabe 02
- Aufgabe 03
- Aufgabe 04
- Aufgabe 05
- Aufgabe 06
- Aufgabe 07
- Aufgabe 08
- Aufgabe 09
- Aufgabe 10
- Algebra
- Mathematische Funktionen
- GGB-Befehle
- Liste von Objekten
- Folge-Befehl
- Skalieren
- Uhr beschriften
- Tabelle
- Wertetabelle
- 3D
- Würfelnetz dynamisch
- CAS
- Gleichung lösen
- Skripting
- Animationsknopf
- Spur, Ortslinie und analytische Kurve
- Animation und Spur
Geometrie
Aufbau der Werkzeugleiste für Elementargeometrie
-
1. Die Werkzeugleiste
-
2. Rechteck
-
3. Dreieck mit Umkreis
-
4. Merkwürdige Punkte im Dreieck
-
5. Pointieren
-
6. Dynamisieren
-
7. Kommentieren
-
8. Beweis ohne Worte
-
9. Aufgabe 01
-
10. Aufgabe 02
-
11. Aufgabe 03
-
12. Aufgabe 04
-
13. Aufgabe 05
-
14. Aufgabe 06
-
15. Aufgabe 07
-
16. Aufgabe 08
-
17. Aufgabe 09
-
18. Aufgabe 10
Die Werkzeugleiste

Komponenten der Werkzeugleiste












Erste Schritte mit GeoGebra
Aufgabe:
- Zeichne einen Punkt P
- Zeichne eine Gerade g, die nicht durch P geht.
- Errichte die Normale n von P auf g.
- Markiere den Schnittpunkt S von n mit g.
- Zeichne den Kreis k mit Mittelpunkt P durch den Punkt S.
- Schraffiere die Kreisfläche.
- Wähle einen Punkt K auf dem Kreis.
- Zeichne die Strecke s = PK und schalte die Spur ein.
- Animiere den Punkt K.
- Schalte die Spur und die Animation wieder aus.


Mathematische Funktionen

Funktionseingabe
Probieren Sie die mathematischen Funktionen aus, indem Sie sie im Eingabefeld eintragen
und diskutieren Sie den Verlauf des Graphen.


Wertetabelle
Die Tabelle funktioniert im Prinzip wie eine Tabellenkalkulation.
Allerdings gelten auch noch alle GGB-Befehle.
Beispiel:
Die Funktion y = kx +d soll tabelliert werden.
- k,d als Schieberegler anlegen.
- Zellen in der Tabelle wie folgt belegen: A1 ="x" B1 ="y" A2 =0 A3 = A2+1 Kopieren bis Zelle A12 B2 =k*A2+d Kopieren bis Zelle B12
- Zellbereich A1..B12 markieren und als Tabelle erzeugen
- Zellbereich A2..B12 markieren und als Liste von Punkten erzeugen


Versuch es selber ...


Würfelnetz dynamisch
Im 3d-Grafikfenster soll ein Würfel mit Netz gezeichnet werden:
- A=(0,0,0) und B=(1,0,0) zeichnen
- Würfel auswählen und über AB zeichnen
- Netz auswählen (Schieberegler wird automatisch angelegt)


Versuche es selber ...


Gleichung lösen
Eine Gleichung mit Hilfe von CAS lösen:
- Löse[<Gleichung>,<Variable>] liefert explizite Lösung(en).
- Lösungen[<Gleichung>,<Variable>] liefert eine Liste der Lösung(en)
- KLöse[] bzw. KLösungen[] liefern komplexe Lösungen
- Löse[{<gl1>,<gl2>},{<var1>,<ver2>}] löst ein Gleichungssystem
- Lösungen[{<gl1>,<gl2>},{<var1>,<ver2>}] liefert eine Matrix


Versuche es selber ...


Animationsknopf
Eine Animation (Punkt auf Kreis) soll per Schaltknopf gestartet bzw. angehalten werden können.
Beispiel: P wandert auf Kreis k.
- k:=Kreis[(0,0),5] zeichnen
- P:=Punkt[k] auf Kreis legen.
- anim:=false
- Schaltfläche1 anlegen mit der Aufschrift "Start"
- Gehe über Eigenschaften von der Schaltfläche1 zu Skripting
- Trage folgenden Script bei Mausklick ein. anim=!anim StartAnimation[P,anim] SetzeBeschriftung[Schaltfläche1,Wenn[anim,"Stop","Start"]]


Versuche es selber ...


Saving…
All changes saved
Error
A timeout occurred. Trying to re-save …
Sorry, but the server is not responding. Please wait a few minutes and then try to save again.