A geometria da forma como é habitualmente trabalhada, muitas vezes não permite que o aluno[br]visualize com clareza propriedades inerentes de certas construções, independente das dimensões que tenham. Por exemplo, que os ângulos opostos de um quadrilátero inscrito a uma circunferência são suplementares.[br][br] Logicamente que mais do que visualizar, espera-se que o aluno convença-se, com argumentos consistentes, da validade desta proposição. Entretanto, o caminho da generalização e formalização passa frequentemente pela observação do fato para diferentes casos. E esse é um recurso que não é natural com uma abordagem com lápis, papel e demais instrumentos de desenho. Além de exigir muita precisão ao manusear com algumas ferramentas, demandaria algum tempo. A Geometria Dinâmica (GD), ao contrário, propicia que com um simples arrastar de mouse, o aluno perceba a preservação, ou não, de certas propriedades e isso acabe por estimular a capacidade do aluno em conjecturar e estabelecer relações para então, a partir de uma etapa de identificação dos objetos, construir o processo dedutivo (demonstração), tão importante não só em geometria como em outras áreas da matemática.[br][br]Além disso, fazer uso da [b]tecnologia[/b] para trabalhar [b]modelagem[/b] alia duas vertentes da Educação Matemática que são cada vez mais difundidas em prol de uma aprendizagem significativa. Sobre essas tendências, Zorzan (2007) preconiza o recurso da tecnologia, defendendo que: [br][br][table][tr][td][size=85][i]Atualmente, em pleno século XXI, quando as máquinas possibilitam informações e soluções em um tempo[br]reduzido, não é mais possível que a escola continue a desmerecer ou desconsiderar a tecnologia em suas propostas pedagógicas. [..] a escola não pode abrir mão dos novos recursos tecnológicos disponíveis, do contrário, tornar-se-á um espaço obsoleto e desvinculado das reais necessidades oriundas da inteligência humana.[/i][/size][br][/td][/tr][/table] [br]E, refletindo sobre a prática da modelagem em sala de aula, a mesma autora esclarece que:[br][br][table][tr][td][i][size=85]A tendência da modelagem matemática exige do professor o trabalho de condução do estudo matemático,[br]literalmente excluindo a relação transmissor-receptor no ensino da disciplina. O professor, em sua função, deverá, pela sua competência técnica e política, problematizar as questões norteadoras do tema e conteúdos abordados. A Educação Matemática, nesta perspectiva, assume a matemática como linguagem para o estudo de problemas e situações reais, devendo proporcionar aos sujeitos o uso da imaginação criadora e o desenvolvimento da capacidade de ler e interpretar a realidade e os saberes matemáticos. Portanto, o estudo da matemática segundo a modelagem requer a interação entre realidade e matemática, com o que se torna possível “representar uma situação ‘real’ com ‘ferramental’ matemático (modelo matemático).”[/size][/i][/td][/tr][/table] [br]É fundamental, porém, para que o uso da GD possa contribuirna construção de uma aprendizagem significativa, que o professor sinta-se seguro para fazer uso da tecnologia, pois não é suficiente apenas disponibilizar ferramentas se a aplicação delas não for pensada e estudada previamente. Da mesma forma, lidar com modelagem exige que o docente tenha uma estratégia metodológica bem definida, cercando-se, assim, de eventuais desdobramentos que possam vir a dispersar o foco do objeto de estudo.[br][br]O professor, portanto, deve assumir um papel deparceiro, conduzindo atividades que visem a exploração e a descoberta e favoreçam a criatividade e o envolvimento do aluno com o assunto em questão. Para Gravina (1996), a GD proporciona umanova abordagem ao aprendizado geométrico, onde conjecturas são feitas a partir da experimentação e criação de objetos geométricos. Deste modo, podemos introduzir o conceito matemático dos objetos a partir da resposta gráfica oferecida pelo programa de GD, surgindo daí o processo de argumentação e[br]dedução.[br][br] Assim, em uma prática em que o sujeito participa e percebe os resultados de suas ações e mais, faz uso desta interação para o desenvolvimento do conhecimento, entende-se haver aprendizagem significativa (conceito sugerido por Ausubel), que só obtém-se quando um novo[br]conhecimento é construído sobre conhecimentos prévios. Mais do que isso, Ausubel (1978) ainda destaca que:[br][br][i][size=85]É importante reconhecer que a aprendizagem significativa (independente do tipo) não quer dizer que a nova informação forma, simplesmente, uma espécie de ligação com elementos preexistentes na estrutura cognitiva. Na aprendizagem significativa, o processo de aquisição de informações resulta em mudança, tanto da nova informação adquirida, como no aspecto especificamente relevante da estrutura cognitiva ao qual essa se relaciona. (apud CARVALHO, BARONE e ZARO, 2011)[/size][/i][br][br] [br]Corroborando com estaperspectiva, Zorzan (2007) alega que: [br][br][size=50][size=85][i]Nesse sentido, os recursos tecnológicos desse contexto precisam ser estudados, analisados, para servirem de constructos a novas maneiras e possibilidades de constituição do saber escolar. De modo especial, o ensino da matemática não pode mais ater-se a um ensino memorístico, no qual se enfatizam as tabuadas e o exercício de cálculos, pois essas atividades não atendem às necessidades sociais. Assim, diante do desenvolvimento do pensamento, do conhecimento, da produção e da cultura, o ensino da matemática, como também das outras áreas do conhecimento, necessita de transformações nos aspectos didático-metodológicos. [/i][/size][/size][br] [br]Em resumo,como a GD possibilita visualizar uma mesma construção de diversas formas, e[br]assim facilitar a compreensão do comportamento geométrico dos elementos envolvidos, podemos utilizar um programa de GD para revelar relações geométricas intrínsecas que poderiam passar despercebidas numa representação estática. Com isso, o professor pode, e deve, incentivar o espírito investigativo do aluno, solicitando ao final uma justificativa para as relações encontradas (uma demonstração), podendo ser mais formal de acordo com o nível[br]de aprendizagem do aluno.