Ortographics views of the point

Monge projection and oblique view of the cube and the point [color=#1155Cc][i]P[/i][/color]. Change the top view [i][color=#3c78d8]P[sub]1[/sub][/color][/i] or/and front view [color=#3d85c6][i]P[sub]2[/sub][/i][/color] of the point.[br][b]Rule:[/b][br]Straight line [i][color=#0B5394]P[sub]1[/sub]P[sub]2[/sub][/color][/i] joining the horizontal and vertical projections of the same point is perpendicular to the base line x[sub]12[/sub] . Part [i][color=#0B5394]P[sub]2[/sub]P[sub]0[/sub][/color][/i] above the base line gives the elevation of the point [color=#0B5394][i]P[/i][/color] above the [color=#0B5394]horizontal plane[/color] [math]\pi[/math] and residual part [i][color=#0B5394]P[sub]1[/sub]P[sub]0[/sub][/color][/i] below the base line is distance of it from the [color=#ff7700]vertical plane .[/color][math]\nu[/math]
Let base line [math]x_{12}[/math] is intersection of projection planes. If point [i]P[/i] lies in the projection [color=#0B5394]horizontal plane[/color] [math]\pi[/math], than
Construction
The vertical planes [math]\alpha[/math] and [math]\beta[/math] are given by projections. Construct adjacent views of arbitrary points [math]A\in\alpha[/math] and [math]B\in\beta[/math].
Close

Information: Ortographics views of the point