Division of two Functions - Asymptotes

[color=#b20ea8][b][math]\\The \;following \; diagram \; allows \; construction \; of \;functions \; h(x)=\frac{f(x)}{g(x)}. \\Define \; the \;numerator \;function \; f(x), \; denominator \; function \;g(x) \; and \; the \;asymptotes\; by\; typing\; their\; expressions.\; \\You\; may\; use\; the\; value \;table \;and\; change\; x,\; deltaX. \; [/math][/b][/color] [color=#1551b5][b][math]\ \\Construct \; a \; function \; of \; the \; form \; h(x)=\frac{f(x)}{g(x)} \; \\1. \; With \;one \;vertical \;asymptote \; x=4 \; and \;one \;horizontal \;asymptote \;y=2. \\2. \; With\; two \; vertical \; asymptotes\; x=4,\; x=2. \\3. \; With \;two \;vertical \;asymptotes \;x=4, \;x=2 \; and \; one \; horizontal \; asymptote \;y=2. \\4. \; With \;two \;horizontal\; asymptotes\; y=2,\; y=-2.[/math][/b][/color] [color=#0a971e][b][math] \\In \;each \;of \;the \; above \;parts \; you \; are \;required \; to \; submit \; a \; screen \; shot \; which \;supports \; your \;answer. \\ You \; may \; write \;on \;your \;papers \;further \; explanation \; if \; necessary.[/math][/b][/color]