Durch die Gleichungen[br][math] \varepsilon_{1}: a_{1} \cdot x + b_{1} \cdot y + c_{1} \cdot z = d_{1} [/math][br][math] \varepsilon_{2}: a_{2} \cdot x + b_{2} \cdot y + c_{2} \cdot z = d_{2} [/math][br][math] \varepsilon_{3}: a_{3} \cdot x + b_{3} \cdot y + c_{3} \cdot z = d_{3} [/math][br]sind drei Ebenen gegeben.[br][br][b]Aufgabe[/b][br]a) Verändere die Schieberegler für die Koeffizienten der Gleichungen und beobachte die Auswirkungen.[br]b) Stelle die Koeffizienten so ein, dass[br][list][*] 2 Ebenen parallel sind,[br][/*][*] 3 Ebenen parallel sind,[br][/*][*] alle 3 Ebenen ein Ebenenbüschel bilden (sie schneiden sich in einer gemeinsamen Geraden).[/*][/list]