"A-Mazing" Translation and Rotation Practice 5
"A-Mazing" Translation and Rotation Practice 5
Circle Reflection: Metric Space
...And what does this reflection business look like, anyway? |
|
Notes: 1. Geogebra does not know how to reflect segments in a straight line with the inversion center (point A). (Other objects work beautifully). To Do: {Clean up! Give the knife coordinate grid a zero point! Include some objects. The worksheet feels klunky to me. Feedback appreciated} _________________ The Tangent Circle Problem: [list] [*]1. Tangent along the rim: solve for k [*]2a. Initial position: [url]http://www.geogebratube.org/material/show/id/58360[/url] [*]2b. Tangent to equal circles: [url]http://www.geogebratube.org/material/show/id/58455[/url] [*]3a. Four mutually tangent & exterior circles (Apollonius): [url]http://www.geogebratube.org/material/show/id/58189 [/url] [*]3b. Vector reduction: [url]http://www.geogebratube.org/material/show/id/58461[/url] [/list] [list] [*]Affine Transformation [url]http://www.geogebratube.org/material/show/id/58177[/url] [*]Reflection: Line about a Circle [url]http://www.geogebratube.org/material/show/id/58522[/url] [*]Reflection: Circle about a Circle: [url]http://www.geogebratube.org/material/show/id/58185[/url] [*][b]→Reflection about a Circle: The Metric Space[/b] [/list] Solution: [list] [*]Sequences 1: Formation [url]http://www.geogebratube.org/material/show/id/58896[/url] [*]Sequence 1: Formation [url]http://www.geogebratube.org/material/show/id/59816[/url] [*]Sequence 1: Iteration 1 [url]http://www.geogebratube.org/material/show/id/59828[/url] [*]Example of equivalent projections: [url]http://www.geogebratube.org/material/show/id/65754[/url] [*]Final Diagram: [url]http://www.geogebratube.org/material/show/id/65755[/url] [/list] |