Cosine of the Difference of Two Angles

Cosine of the Sum/Difference of Two Angles
Using the diagram above, we can show two angles, [math]\alpha[/math] and [math]\beta[/math] in standard position. Let [math]T[/math] and [math]R[/math] be the points where their terminal sides meet the unit circle. [i]Show Alpha and Beta using the checkboxes.[br][math]T\left(\cos\alpha,\sin\alpha\right)[/math][br][/i][math]R\left(\cos\beta,\sin\beta\right)[/math][br][br][math]m\angle TOR=\alpha-\beta[/math] [i]Show the difference[/i][br]Now, we can put this angle into standard position, by rotating the triangle.[br][br][i]Check "Rotation" and use the slider to rotate the triangle into standard position. Check "Rotated Labels"[/i][br][size=100]If [math]S[/math] is the point where the terminal side of [math]\alpha-\beta[/math], now in standard position, meets the unit circle, then it has coordinates:[br][math]S\left(\cos\left(\alpha-\beta\right),\sin\left(\alpha-\beta\right)\right)[/math][math]Q\left(1,0\right)[/math][/size]
Why is [math]\triangle TOR\cong\triangle SOQ[/math]?
[math]TR=SQ[/math][br]Use the coordinates of [math]T,R,S,Q[/math] and the distance formula to rewrite this equation. Square both sides. Expand everything and simplify. Finally solve for [math]\cos\left(\alpha-\beta\right)[/math].
Angle Difference Formula for Cosine
Now apply this formula using the angles [math]\alpha[/math] and [math]-\beta[/math]. Use even and odd properties to simplify so everything is expressed in terms of functions of [math]\alpha[/math] and [math]\beta[/math].[br]
Angle Sum Formula for Cosine
Schließen

Information: Cosine of the Difference of Two Angles