Perpendicular Bisector

A [url=https://en.wikipedia.org/wiki/Line_segment]line segment[/url] bise[b]ctor pas[/b]ses through the [url=https://en.wikipedia.org/wiki/Midpoint]midpoint[/url] of the segment. Particularly important is the [url=https://en.wikipedia.org/wiki/Perpendicular]perpendicular[/url]bisector of a segment, which, according to its name, meets the segment at [url=https://en.wikipedia.org/wiki/Right_angle]right angles[/url]. The perpendicular bisector of a segment also has the property that each of its points is [url=https://en.wikipedia.org/wiki/Equidistant]equidistant[/url] from the segment's endpoints. Therefore [url=https://en.wikipedia.org/wiki/Voronoi_diagram]Voronoi diagram[/url] boundaries consist of segments of such lines or planes.

Invalid video URL:

Information: Perpendicular Bisector