gemiddelde functiewaarde - pas toe

Met de integraal [math]\int_{a}^{b}{ f(x)\; dx}[/math] bereken je de oppervlakte begrensd door de x-as, de grafiek van f [br]en de rechten  x = a en x = b.[br]Er bestaat een gemiddelde functiewaarde [math]\overline{f(x)}[/math] zodat je een rechthoek kan tekenen met een oppervlakte[math]\overline{f(x)}\cdot (b - a)[/math], gelijk aan de oppervlakte begrensd door de x-as, de grafiek van f en de rechten x = a en x = b.[br]Dus: [math]\overline{f(x)}\cdot (b - a)[/math] = [math]\int_{a}^{b}{ f(x)\; dx}[/math], waaruit je de formule voor de gemiddelde functiewaarde kan afleiden.[br][u]formule[/u]:[br]De gemiddelde functiewaarde van een functie f over een interval [a, b] bereken je met de formule:[br][math]\overline{f(x)}=\frac{1}{b-a}\cdot\int_a^bf(x)\cdot dx[/math]

Information: gemiddelde functiewaarde - pas toe