There are so many ways to project, and then reproject inside the circle, I may leave off here.[br][br][br][br][br]_________________[br]The Tangent Circle Problem:[br][list][br][*]1. Tangent along the rim: solve for k[br][*]2a. Initial position: [url]http://www.geogebratube.org/material/show/id/58360[/url] [br][*]2b. Tangent to equal circles: [url]http://www.geogebratube.org/material/show/id/58455[/url] [br][br][*]3a. Four mutually tangent & exterior circles (Apollonius): [url]http://www.geogebratube.org/material/show/id/58189 [/url][br][*]3b. Vector reduction: [url]http://www.geogebratube.org/material/show/id/58461[/url] [br][/list][br][list][br][*]Affine Transformation [url]http://www.geogebratube.org/material/show/id/58177[/url] [br][*]Reflection: Line about a Circle [url]http://www.geogebratube.org/material/show/id/58522[/url] [br][*]Reflection: Circle about a Circle: [url]http://www.geogebratube.org/material/show/id/58185[/url] [br][*]Circle Inversion: Metric Space: [url]http://www.geogebratube.org/material/show/id/60132[/url] [br][/list][br]Solution:[br][list][br] [*]Sequences 1: Formation [url]http://www.geogebratube.org/material/show/id/58896[/url] [br] [*]Sequence 1: Formation [url]http://www.geogebratube.org/material/show/id/59816[/url] [br] [*]Sequence 1: Iteration 1 [url]http://www.geogebratube.org/material/show/id/59828[/url] [br] [*]Example of equivalent projections: [url]http://www.geogebratube.org/material/show/id/65754[/url] [br] [b]→Final Diagram[/b][br][/list]