Quadratic Inequalities (Equations and Parabolas)

Solving a Quadratic Inequality Graphically
The graph of a [i][color=#1e84cc][b]quadratic function[/b][/color][/i] [math]y=ax^2+bx+c[/math] in a Cartesian coordinate system is a [i][color=#1e84cc][b]parabola[/b][/color][/i].[br][br]To [i][b][color=#1e84cc]solve[/color][/b][/i] a [i][b][color=#1e84cc]quadratic inequality[/color][/b][/i] [math]ax^2+bx+c>0[/math] or [math]ax^2+bx+c<0[/math] [i][b][color=#1e84cc]graphically[/color][/b][/i], draw the corresponding parabola, then:[br][list][*]The[color=#1e84cc] [i][b]x-coordinates[/b][/i][/color] of the points (if they exist) where the [i][b][color=#1e84cc]parabola intersects[/color][/b][/i] the[i][b] [color=#1e84cc]x-axis[/color][/b][/i] are the [i][b][color=#1e84cc]solution[/color][/b][/i] of the[color=#1e84cc] [i][b]equation[/b][/i][/color] [math]ax^2+bx+c=0[/math] (zeros of the equation)[/*][/list][list][*]The [color=#1e84cc][i][b]x-coordinates[/b][/i][/color] of the points (if they exist) where the [i][b][color=#1e84cc]parabola[/color][/b][/i] is[color=#1e84cc] [/color][i][b][color=#1e84cc]above[/color] [/b][/i]the [i][b][color=#1e84cc]x-axis[/color][/b][/i] are [i][b][color=#1e84cc]solution[/color] [/b][/i]of the [i][b][color=#1e84cc]inequality[/color][/b][/i] [math]ax^2+bx+c>0[/math][/*][/list][list][*]The[color=#1e84cc] [i][b]x-coordinates[/b][/i][/color] of the points (if they exist) where the [i][b][color=#1e84cc]parabola[/color][/b][/i] is [i][b][color=#1e84cc]below[/color][/b][/i] the [i][b][color=#1e84cc]x-axis[/color][/b][/i] are [b][i][color=#1e84cc]solution [/color][/i][/b]of the[color=#1e84cc] [i][b]inequality[/b][/i][/color] [math]ax^2+bx+c<0[/math][br][/*][/list]
Ready, Set, Practice!
Find the solutions of a quadratic equation or inequality by exploring the graph of the corresponding parabola.[br][br]Use the input box to enter different quadratic expressions and the drop down list to select the equation or inequality form to solve. [br][br]Use the mouse wheel or the predefined gestures for mobile devices to zoom in/out and view details in the [i]Graphics View[/i].[br][br]
Today You Are the Teacher!
Today's assignment is the inequality [math]x^2-49<0[/math]. [br][br]Alice solves it like this: [math]x^2<49\rightarrow x<\pm7[/math].[br][br]Bob solves [math]x^2-49=0[/math] first, and gets [math]x=\pm7[/math]. Then he graphs the parabola corresponding to the given equation and finds the solution [img][/img].[br][br]Chuck uses ChatGPT 2 and finds that the solution is [math]-7\le x\le7[/math].[br][br]Alice says that her method is faster than Bob's, because it doesn't require sketching a graph.[br][br]Grade your students' solutions, and explain the reasons for your grading.
Hamletic Doubt...
Below you can see the solution of one of the following inequalities. [br]Choose the correct one.[br][img][/img]
Close

Information: Quadratic Inequalities (Equations and Parabolas)