Exponential Functions: Graphs

The following applet displays the graph of the exponential function [math]f\left(x\right)=c\cdot a^{kx}+d[/math]. [br]Interact with the applet below for a few minutes, then answer the questions that follow.
[b][color=#000000]Questions:[/color][/b][br][br][color=#000000]1) How does the parameter [/color][color=#cc0000][b]a[/b][/color] [color=#000000]affect the graph of the exponential function? Explain. [br] What happens if [/color][color=#cc0000][b]a > 1[/b][/color][color=#000000] and [/color][color=#1e84cc][b]k > 0[/b][/color][color=#000000]? What happens if [/color][color=#cc0000][b]a < 1[/b][/color][color=#000000] and [/color][color=#1e84cc][b]k > 0[/b][/color][color=#000000]? [br][br][/color][color=#000000]2) How does the parameter [/color][b][color=#1e84cc]k[/color][/b][color=#000000] affect the graph? Explain. [br] If you need a hint, refer back to [url=https://www.geogebra.org/m/HJvZSUna]this worksheet[/url]. [br][br][/color][color=#000000]3) What does the parameter [/color][color=#980000][b]d[/b][/color][color=#000000] do the graph? Explain. [br][br][/color][color=#000000]4) Suppose [/color][color=#cc0000][b]a < 1[/b][/color][color=#000000]. [br] Given this constraint, is it possible to get the graph of this exponential function to look the way it does[br] when [/color][color=#cc0000][b]a > 1[/b][/color][color=#000000] and [/color][color=#1e84cc][b]k > 0[/b][/color][color=#000000]? Explain. [/color]

Differentiation from first principles

Differentiation from first principles
What happens to the gradient of the chord line as PN approaches 0?

Ableitung der Sinusfunktion

Zusammenhang von Funktion und Ableitung

Zusammenhang von Funktion und Ableitung

Information