-
Differentialrechnung
-
1. Funktionen
- Exponential Functions: Graphs
- Exponential Functions (Graph & Equation Anatomy)
- Domain & Range: Illustrated
-
2. Sekante Tangente
- Differentiation from first principles
- Differential calculus - first principles
-
3. Ableitung Sinus und Cosinus
- Ableitung der Sinusfunktion
- Ableitung der Cosinusfunktion
- Sine & Cosine of a Sum: Discovery
- Unit Circle and Sine Graph
-
4. Optimierung
-
5. Zweite Ableitung
- Zusammenhang von Funktion und Ableitung
- Zusammenhänge erste und zweite Ableitung
-
6. Kurvendiskussion
This activity is also part of one or more other Books. Modifications will be visible in all these Books. Do you want to modify the original activity or create your own copy for this Book instead?
This activity was created by '{$1}'. Do you want to modify the original activity or create your own copy instead?
This activity was created by '{$1}' and you lack the permission to edit it. Do you want to create your own copy instead and add it to the book?
Differentialrechnung
John Flath, Mar 1, 2017

Table of Contents
- Funktionen
- Exponential Functions: Graphs
- Exponential Functions (Graph & Equation Anatomy)
- Domain & Range: Illustrated
- Sekante Tangente
- Differentiation from first principles
- Differential calculus - first principles
- Ableitung Sinus und Cosinus
- Ableitung der Sinusfunktion
- Ableitung der Cosinusfunktion
- Sine & Cosine of a Sum: Discovery
- Unit Circle and Sine Graph
- Optimierung
- Zweite Ableitung
- Zusammenhang von Funktion und Ableitung
- Zusammenhänge erste und zweite Ableitung
- Kurvendiskussion
Exponential Functions: Graphs
The following applet displays the graph of the exponential function .
Interact with the applet below for a few minutes, then answer the questions that follow.


Questions:
1) How does the parameter a affect the graph of the exponential function? Explain.
What happens if a > 1 and k > 0? What happens if a < 1 and k > 0?
2) How does the parameter k affect the graph? Explain.
If you need a hint, refer back to this worksheet.
3) What does the parameter d do the graph? Explain.
4) Suppose a < 1.
Given this constraint, is it possible to get the graph of this exponential function to look the way it does
when a > 1 and k > 0? Explain.
Differentiation from first principles
Differentiation from first principles


What happens to the gradient of the chord line as PN approaches 0?
Ableitung der Sinusfunktion


Zusammenhang von Funktion und Ableitung
Zusammenhang von Funktion und Ableitung


Saving…
All changes saved
Error
A timeout occurred. Trying to re-save …
Sorry, but the server is not responding. Please wait a few minutes and then try to save again.