[color=#000000][b]Theorem:[/b][/color][br][br][color=#000000]A triangle's[/color] [color=#38761d][b]9-Point Circle[/b][/color] [color=#000000]bisects the[/color] [color=#9900ff][b]segment [/b][/color][color=#000000]that connects the triangle's[/color] [color=#ff7700][b]orthocenter[/b][/color] [color=#000000]to any point on that triangle's [/color][color=#980000][b]circumcircle[/b][/color]. [color=#000000](See below.)[br][br][i]Note[/i]:[/color][color=#980000][b] C[/b][/color][color=#000000] is the [/color][color=#980000][b]circumcenter[/b][/color][color=#000000] of the triangle and [/color][color=#ff7700][b]O [/b][/color][color=#000000]is its [/color][color=#ff7700][b]orthocenter[/b][/color][color=#000000]. [br] Feel free to move the triangle's [/color][color=#444444][b]gray vertices[/b][/color][color=#000000] anywhere you'd like![br][br] [/color]