Suppose a function [math]f[/math] is integrable over the entire close interval [math][a,b][/math], and [math]c[/math] is any point in the interval [math][a,b][/math]. The [b]sum property[/b] of definite integrals states that [math]\int_a^bf(x)\text{ }dx=\int_a^cf(x)\text{ }dx+\int_c^bf(x)\text{ }dx[/math].[br][br]You can adjust the sliders [math]a[/math], [math]b[/math], and [math]c[/math] to create different values of limits of integration. [br]The location of[b] [color=#c27ba0]the pink point [i]C[/i][/color][/b] can also be changed.
[i]Developed for use with Thomas' Calculus, published by Pearson.[/i]