[u]Question[/u]: Describe what happens to two non-zero vectors [math]\vec{u}[/math] and [math]\vec{v}[/math] and their dot product when[br][br](a) [math]\theta = 0[/math] (b) [math]\theta = \pi[/math] (c) [math]\theta = \frac{\pi}2[/math] (d) [math]0\leq\theta<\frac{\pi}2[/math] (e) [math]\frac{\pi}2<\theta\leq \pi[/math][br]
(a) When [math]\theta =0[/math], both vectors are of the same direction and [math]\vec{u}\cdot\vec{v}=|u| |v|[/math].[br][br](b) When [math]\theta =\pi[/math], both vectors are of opposite directions and [math]\vec{u}\cdot\vec{v}=-|u| |v|[/math].[br][br](c) When [math]\theta =\frac{\pi}2[/math], two vectors are perpendicular to each other and [math]\vec{u}\cdot\vec{v}=0[/math].[br][br](d) When [math]0\leq\theta<\frac{\pi}2[/math], [math]\cos\theta>0[/math] and hence [math]\vec{u}\cdot\vec{v}>0[/math].[br][br](e) When [math]\frac{\pi}2<\theta\leq \pi[/math], [math]\cos\theta<0[/math] and hence [math]\vec{u}\cdot\vec{v}<0[/math].