Dot products and Cross products

[b]Dot Products[/b][br][br]Given any two vectors [math]\vec{u}[/math] and [math]\vec{v}[/math] in [math]\mathbb{R}^2[/math] or [math]\mathbb{R}^3[/math], we define their [b]dot product[/b] as follows:[br][br][math]\vec{u}\cdot \vec{v}=|\vec{u}| |\vec{v}| \cos\theta [/math][br][br]when both vectors are non-zero and [math]\theta[/math] is the angle in the range from [math]0[/math] to [math]\pi[/math] formed by translating two non-zero vectors such that their tails meet at a point. If either [math]\vec{u}=0[/math] or [math]\vec{v}=0[/math], [math]\theta[/math] is not defined and [math]\vec{u}\cdot \vec{v}[/math] is defined to be [math]0[/math].[br][br][u]Remark[/u]: From the definition, we have [math]\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}[/math].[br][br]In the applet below, bring the two vectors together in the plane to find out their dot product.[br]
[u]Question[/u]: Describe what happens to two non-zero vectors [math]\vec{u}[/math] and [math]\vec{v}[/math] and their dot product when[br][br](a) [math]\theta = 0[/math] (b) [math]\theta = \pi[/math] (c) [math]\theta = \frac{\pi}2[/math] (d) [math]0\leq\theta<\frac{\pi}2[/math] (e) [math]\frac{\pi}2<\theta\leq \pi[/math][br]
[u]Definition[/u]: Two vectors are [b]orthogonal[/b] if their dot product is zero i.e. if two vectors are orthogonal, they are either both non-zero and perpendicular to each other, or at least one of the vectors is a zero vector. [br][br][u]Remark[/u]: Zero vector is orthogonal to any vector.
[u]Exercise[/u]: [br][br](a) Let [math]\vec{u}=\langle 3, -2, 0\rangle[/math] and [math]\vec{v}=\langle 0, 0, 7\rangle[/math]. Show that they are orthogonal.[br][br](b). Let [math]\vec{p}=\langle \sqrt{3}, 1\rangle[/math] and [math]\vec{q}=\angle 0, 1\rangle[/math]. Find [math]\vec{u}\cdot\vec{v}[/math].[br]
Close

Information: Dot products and Cross products