Constructing one segment to be the same length as another segment is different from just copying the segment. Euclid used circles to construct a segment that was the same length as another segment, but located at a different endpoint. That was a complicated procedure. In GeoGebra, we can use the compass tool to make that construction easier.[br]After Euclid did his construction of an equilateral triangle, he used that to show how to copy a segment length to another location. In dynamic geometry, this means making the length of a second segment (CH) dependent on the length of the first segment (AB).