A Special Theorem: Part 2 (V1)

[color=#000000]In the applet below, the [/color][color=#980000]perpendicular bisector[/color][color=#000000] of the [/color][color=#0000ff]blue segment (with endpoints [i]A[/i] and [i]B)[/i][/color][color=#000000] is shown. [br] [/color][br][color=#000000]Before completing the directions below, [/color][color=#0000ff]move/drag points [i]A[/i] and [i]B[/i] around[/color][color=#000000] to verify that the [/color][color=#980000]brown line[/color][color=#000000] is the [/color][color=#980000]perpendicular bisector[/color][color=#000000] of [/color][i]AB[/i][color=#000000].  [/color][br][color=#000000] [/color][br][color=#ff0000][b]Directions: Use the tools of GeoGebra to do the following:[/b][/color][br][br][color=#000000]1) Plot a point anywhere [b][i]on[/i][/b] this [/color][color=#980000]perpendicular bisector[/color][color=#000000].  [/color][br][br][color=#000000]2) Measure and display the distance from this point to [/color][color=#0000ff]point [i]A[/i][/color][color=#000000].[/color][br][color=#000000]3) Measure and display the distance from this point to[/color] [color=#0000ff]point [i]B[/i][/color].[br][br][color=#000000]3) Now drag this point along the[/color][color=#980000] perpendicular bisector[/color][color=#000000] as much as you'd like. [br]    Be sure to zoom out and keep dragging this point along this [/color][color=#980000]perpendicular bisector[/color][color=#000000].[br][br][/color]    [i][color=#000000]What do you notice?[/color] [/i]
[color=#000000]4) Use your observations to complete the following statement:  [/color][br][br]    [color=#980000][b]If a point lies on the ______________________    ___________________ of a [br][br]    ________________________, then that ____________ is ___________________[br][br]   from the ____________________ of that _____________________.  [/b][/color][br][br][color=#000000][br]5) Prove the statement (you completed in step (4) above) using the format of a 2 column proof.  [br][/color]

Information: A Special Theorem: Part 2 (V1)