In the opposite way we can devide a cube into three equal pyramids.[br]Let s be the length of the side of the cube. For the volume V of the pyramid we find:[br][table][tr][td]3. V[/td][td]= s³[/td][/tr][tr][td]V =[/td][td]1/3 . s³[/td][/tr][tr][td]V =[/td][td]1/3 . s² . s[/td][/tr][tr][td][b]V =[/b][/td][td][b]1/3 area[sub]base[/sub] . heigth[/b][/td][/tr][/table]