"e" as the limit of a binomial
* Raise [math]n[/math] to the maximum on the slider and observe how the red curve [math]g(x)=\left(1+\frac{R}{n}\right)^{nx}[/math] approaches the blue curve [math]f(x)=e^{Rx}[/math]. * Deduce an expression for [math]e[/math]. * How would the expression change if [math]R>2[/math]? |
|
Note that [math]f(x) > g(x)[/math] for a given growth rate [math]R[/math] for all [math]x[/math]. |
13.2, 5 Adams Calculus
Plot af funktionen: f(x,y)=x*y-x^3*y^2 Hvor: 0<=x<=1 og 0<=y<=1 |
|