In the applet below, note the [color=#cc0000][b]RED POINT. [/b][/color] [br][br]Notice how the [b][color=#ff0000]RED POINT[/color][/b] is [color=#38761d][b]ALWAYS EQUIDISTANT (the same distance away)[/b][/color] from the [color=#666666][b]ENDPOINTS of the gray segment[/b][/color]. That is, the [color=#ff0000][b]RED POINT[/b][/color] is always remains the [color=#38761d][b]SAME DISTANCE AWAY[/b][/color] from the [color=#666666][b]ENDPOINTS of segment [i]AB[/i]. [/b][/color][br][br][b]Directions:[/b][br][br]1) Drag the [b][color=#ff0000]RED POINT[/color][/b] around for a bit. [br]2) Then, [b]move point(s) [i]A[/i] and/or [i]B[/i] around[/b], [color=#ff0000][b]clear the trace[/b][/color], and then drag the [b][color=#ff0000]RED POINT[/color][/b] around again. [br]3) Repeat steps (1) and (2) several times. [br][br]Answer the questions that appear below the applet.
What vocabulary term (adjective) would [b]describe the angle[/b] at which the [color=#ff0000][b]collection of all these red points [/b][/color]intersects the [color=#666666][b]gray segment[/b][/color]?
What does this [color=#ff0000][b]collection of points[/b][/color] [color=#bf9000][b](line, in this case) [/b][/color]do to the [b][color=#666666]gray segment[/color][/b]?
What general conclusion can you make about [b][color=#ff0000]ANY POINT [/color][/b]that is [b][color=#38761d]equidistant (that is, equally distant)[/color][/b] from the [b][color=#666666]ENDPOINTS of a segment[/color][/b]? [color=#bf9000][b]Where does it lie[/b]? [/color]