Perspectiva Isométrica
[justify]A [b]perspectiva isométrica[/b], também chamada de projeção isométrica, é uma maneira específica de representar uma imagem tridimensional. A palavra "isométrica" significa "medidas iguais". Na projeção isométrica, os três eixos são separados uns dos outros por ângulos iguais, e as linhas paralelas permanecem a uma distância igual uma da outra. [br][br]É a perspectiva que dá a sensação de menor deformação do objeto. Ela mantém as mesmas proporções de comprimento, largura e altura do objeto representado. [br][br]Possui as três faces oblíquas ao plano de trabalho inclinadas a 30º da horizontal;[/justify]
[justify]O desenho da perspectiva isométrica é baseado num sistema de três semirretas que tem o mesmo ponto de origem e formam entre si três ângulos de 120°. Essas semirretas assim dispostas recebem o nome de eixo isométrico.[br][br]• Usar o jogo de esquadros para construir a figura abaixo;[/justify]
[justify] Arestas não isométricas, são representadas fora da sua verdadeira grandeza.[br] [br]• Considerar um sólido primitivo para facilitar a confecção do desenho. [br][br]• Esses elementos são oblíquos, porque possuem linhas que não são paralelas aos eixos isométricos. [/justify]
Nas figuras abaixo, os segmentos de reta: AB, CD, EF, GH, IJ, LM, NO, PQ e RS são linhas não isométricas que formam os elementos oblíquos.
[b][center]Exemplo:[/center][/b]
[justify]Qualquer reta paralela a um eixo isométrico é chamada de linha isométrica. Na figura abaixo tem-se as linhas r, s, t, u, z como isométricas, em relação aos eixos x, y e z. A linha v não é isométrica. [/justify]
[justify]Qualquer reta paralela a um eixo isométrico é chamada linha isométrica. As linhas não paralelas aos eixos isométricos são linhas não isométricas. [/justify]
[b][center]Exemplo:[/center][/b]
[justify]O traçado de um prisma retangular na perspectiva isométrica será mostrado em 5 fases. [br] [br][b]1ª fase -[/b] Trace levemente, à mão livre, os eixos isométricos e indique o comprimento, a largura e a altura sobre cada eixo, tomando como base as medidas aproximadas do prisma representado na figura anterior.[/justify]
[justify][b]2ª fase -[/b] A partir dos pontos onde você marcou o comprimento e a altura, trace duas linhas isométricas que se cruzam. Assim ficará determinada a face da frente do modelo.[/justify]
[justify][b]3ª fase -[/b] Trace agora duas linhas isométricas que se cruzam a partir dos pontos onde você marcou o comprimento e a largura. Assim ficará determinada a face superior do modelo. [/justify]
[justify][b]4ª fase -[/b] E, finalmente, você encontrará a face lateral do modelo. Para tanto, basta traçar duas linhas isométricas a partir dos pontos onde você indicou a largura e a altura.[/justify]
[justify][b]5ª fase (conclusão) [/b]- Apague os excessos das linhas de construção, isto é, das linhas e dos eixos isométricos que serviram de base para a representação do modelo. Depois, é só reforçar os contornos da figura e está concluído o traçado da perspectiva isométrica do prisma retangular. [/justify]
[b][center]Passo a Passo:[/center][/b]
Como desenhar um círculo em Perspectiva Isométrica: