Copy of Arc Length to Surface of Revolution: Calculus

This applet dynamically illustrates how rotating an [b]arc length[/b] of a piece of the graph of a function [math]f[/math] , from [math]x=a[/math] to [math]x=b[/math], about an axis, generates a [b][color=#a64d79]surface of revolution[/color][/b]. [br][br]For simplicity, the axis of revolution here is the [i]x[/i]-axis. [br][br]You can alter the values of [br][br][math]a[/math] = lower limit of integration[br][math]b[/math] = upper limit of integration[br][math]n[/math] = number of equal intervals into which the interval [math]\left[a,b\right][/math] is divided. [br][br]How does increasing the value of [math]n[/math] change the appearance of the [b][color=#a64d79]surface of revolution[/color][/b]?
Quick (Silent) Demo

Information: Copy of Arc Length to Surface of Revolution: Calculus