![](https://cdn.geogebra.org/resource/rgq3tk3Y/T1FjeCZDOhVYuRHe/material-rgq3tk3Y.png)
Newton Fraktal
Gemäß dem Newtonschen Näherungsverfahren f[sub]n+1[/sub]=f[sub]n[/sub]-c f[sub]n[/sub]/f'[sub]n[/sub] wird die Funktion y=z³-1 iteriert.[br]Mit der komplexen Zahl c kann die Grafik gesteuert werden.
Mandelbrot-Menge 1
![](https://cdn.geogebra.org/resource/rgq3tk3Y/T1FjeCZDOhVYuRHe/material-rgq3tk3Y.png)
![](https://cdn.geogebra.org/resource/Kecvyj77/QprOuMAXCPxFGMWJ/material-Kecvyj77.png)
![](https://cdn.geogebra.org/resource/sV6gThgK/e8pUlutzczpWPlkU/material-sV6gThgK.png)
![](https://cdn.geogebra.org/resource/TxpWxbwz/42sJvmEwOGQalgEO/material-TxpWxbwz.png)
![](https://cdn.geogebra.org/resource/YpPQuQUh/GXry0BfFFnI0XYOy/material-YpPQuQUh.png)
![](https://cdn.geogebra.org/resource/kwnSzctK/E1tqL47alKzkkT52/material-kwnSzctK.png)
![](https://cdn.geogebra.org/resource/jYkdwTbX/2BfJbt3eBTfvrBiQ/material-jYkdwTbX.png)
![](https://cdn.geogebra.org/resource/bMUzXShs/7zl7VYTNoPrY4isP/material-bMUzXShs.png)
![](https://cdn.geogebra.org/resource/ycrDnHap/3VyEu8AhlRafXGiz/material-ycrDnHap.png)
![](https://cdn.geogebra.org/resource/rPzUUDwP/0MzFxobYUCXzvPHx/material-rPzUUDwP.png)
![](https://cdn.geogebra.org/resource/wCEWyCFu/5iC0Eb5E20DH05Ep/material-wCEWyCFu.png)
![](https://cdn.geogebra.org/resource/nfUq4f9g/7Oo6LNAVnKA1QTbT/material-nfUq4f9g.png)
![](https://cdn.geogebra.org/resource/GJpx9dw4/8CkvEEKBjinCgMMg/material-GJpx9dw4.png)
![](https://cdn.geogebra.org/resource/UbGa37r3/IXjXzlLkhBVosiuS/material-UbGa37r3.png)
![](https://cdn.geogebra.org/resource/EYUT9KqU/a4dZ3yhbJ5xabG0U/material-EYUT9KqU.png)