The following three equations define three planes: [math] \epsilon_{1}: a_{1} \cdot x + b_{1} \cdot y + c_{1} \cdot z = d_{1} [/math] [math] \epsilon_{1}: a_{2} \cdot x + b_{2} \cdot y + c_{2} \cdot z = d_{2} [/math] [math] \epsilon_{1}: a_{3} \cdot x + b_{3} \cdot y + c_{3} \cdot z = d_{3} [/math] [b]Exercise[/b] a) Vary the sliders for the coefficient of the equations and watch the consequences. b) Adjust the sliders for the coefficients so that [list] [*] two planes are parallel, [*] three planes are parallel, [*] all three planes form a cluster of planes intersecting in one common line. [/list]
Andreas Lindner