Caso generale: y=mx+q

Ora che abbiamo studiato separatamente l'effetto di [math]q[/math] e quello di [math]m[/math], proviamo a considerarli insieme: prendiamo [color=#0000ff][b]una retta del tipo [math]y=mx[/math] (caso precedente) e disegniamola in blu[/b][/color] tenendola fissa come riferimento. [br][br]Prendiamo poi una seconda retta identica alla prima, a cui però diamo un valore di [math]q[/math] qualsiasi, diverso da 0, e vediamo come cambia rispetto alla retta di riferimento.
Vediamo che la y di ogni punto rosso si ottiene sommando [math]q[/math] a quella del corrispondente punto blu, per cui risulta alzato (o abbassato, se [math]q[/math] è negativo) proprio di [math]q[/math].[br][br]L'inclinazione delle due rette rimangono identiche (e quindi può essere associata ad [math]m[/math], che è uguale nella retta rossa ed in quella blu): [math]q[/math] ha il solo effetto di traslare la retta verticalmente.

Information: Caso generale: y=mx+q