Chapter 39: Exercise 3.2

39.3.2 For the following graphs of vector fields, determine whether the divergence is positive, negative or zero. Remember:  div(v) represents the "outward flux density" of v at a given point.
1.1 Drag the point around and observe the behaviour of the vectors around the box
1.2 Based on your observation
Is the divergence of this vector field positive, negative or zero?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
2.1 Drag the point around and observe the behaviour of the vectors around the box
2.2 Based on your observation
Is the divergence of this vector field positive, negative or zero?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
3.1 Drag the point around and observe the behaviour of the vectors around the box
3.2 Based on your observation
Is the divergence of this vector field positive, negative or zero?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Once you finished exploring with the applets and aswered all questions you can close this window.
Close

Information: Chapter 39: Exercise 3.2