Select [b]all [/b]the values that are solutions to [math]-x\ge-4[/math]:
For which values of [math]x[/math] is it true that [math]x-3=-2[/math]?
For which values of [math]x[/math] is it true that [math]x-3>-2[/math]?
[size=150]Here is an inequality: [math]2x<6[/math].[/size][br][br]Predict which values of [math]x[/math] will make the inequality [math]2x<6[/math] true.
Does the table match your prediction?
[size=150]Here is an inequality: [math]-2x<6[/math].[/size][br][br]Predict which values of [math]x[/math] will make the inequality [math]-2x<6[/math] true.
Does the table match your prediction?
How are the solutions to [math]2x<6[/math] different from the solutions to [math]-2x<6[/math]?
[size=150]Let's investigate: [math]-4x+5\ge25[/math][/size][br][br]Solve [math]-4x+5=25[/math].
Is [math]-4x+5\ge25[/math] true when [math]x[/math] is 0? What about when [math]x[/math] is 7? What about when [math]x[/math] is -7?
[size=150]Let's investigate [math]\frac{4}{3}x+3<\frac{23}{3}[/math].[/size][br][br]Solve [math]\frac{4}{3}x+3=\frac{23}{3}[/math].
Is [math]\frac{4}{3}x+3<\frac{23}{3}[/math] true when [math]x[/math] is 0?
Write at least [b]three [/b]different inequalities whose solution is [math]x>-10[/math]. Find one with [math]x[/math] on the left side that uses a [math]<[/math].