[size=200][color=#1155Cc]The fundamental theorem of algebra - a visual proof [/color][/size][br][br][url=http://weitz.de/fund/]http://weitz.de/fund/[/url][math]\nearrow[/math][br][url=https://youtu.be/IQ4vHoJSLxk]Der Fundamentalsatz der Algebra (anschaulicher Beweis)[/url][icon]/images/ggb/toolbar/mode_viewinfrontof.png[/icon][math]\nearrow[/math][br][br]Do not set a[sub]i[/sub]=0, use checkboxes to switch on/off using coefficient a[sub]i[/sub]. [br]The function f(x) CAS (1) has probably to be set manually if cell do not actualize - mark cell + Num Eval.[br][br]Hints:[br]a[sub]i[/sub] complex coefficient of p(z) - input of values[br] [math]a_i= r+c \;i =\left(\sqrt{r^2+c^2 };arctan(\frac{c}{r}\right)[/math] polarcoordinates (m[sub]i[/sub]; ω[sub]I[/sub])[br]z=(a ; φ) polarcoordinates - sliders on top - (0<=a<=10)[br]Z[sub]i[/sub] = a[sub]i[/sub] z[sup]i[/sup] polynom summand in polarcoordinates =( m[sub]i[/sub] a[sup]i[/sup] ; ω[sub]i[/sub] + i φ) -> vectors v[sub]i[/sub] [br]c(t) parametric curve of polynom p(z) - graph p(z) [br]P[sub]z[/sub] = p(z)[br] [br]App - Darstellung der 3. Nullstelle p(z): [math]\sum_{i=0}^{5}Z_{i}=0[/math]:
[math]f(z) \, := \, z^{5} \; \left(\frac{i}{2} \; \pi + 4 \right) + 5 \; z^{4} + \left(2 + 3 \; i \right) \; z^{3} + 2 \; z^{2} + \left(-7 - 2 \; i \right) \; z + 6 - 2 \; i[/math][br]The summands of the polynomial build a vector chain (blue). A root can be found if the vector chain of the coefficients is closed - returning to the origin.[br][br][list=1][*]increase modulus (slider a) so far to have a complete free circular disc around the point of origin Z[br][img][/img][br][/*][*]decrease modulus to intersect graph p(z) and origin Z=(0,0) - close vector chain[br][img][/img][/*][*]zoom graph to position P[sub]z[/sub] (slider φ) as close as possible to the origin[/*][*](a ; φ ) root in polarcoordinates ==> cartesian coordinates[br][img][/img][/*][*]check calculated roots in L[sub]cpx[/sub] - next intersection[/*][/list][br][math]a\longrightarrow0\Rightarrow p\left(z\right)\longrightarrow Z_0[/math] [br][img][/img]
Polynom surface and root points X (set property style: Level of Detail [Quality] )
f(x):=4x⁵ + 5x⁴ + 2x³ + 2x² - 7x + 6