Parity of Trig Functions

Parity of a Function
The [b]parity[/b] of a function says whether a function is even, odd or neither.[br][br]To review:[br][br]A function is [b]odd[/b] if [math]f(-x)=-f(x)[/math][br]Odd functions have origin symmetry.[br][br]A function is [b]even[/b] if [math]f(-x)=f(x)[/math][br]Even functions have [math]y[/math]-axis symmetry.
Parity for a Trigonometric Function
Using the graph above, since [math]P[/math] is on the unit circle, it has coordinates: [math]\left(\cos\theta,\sin\theta\right)[/math][br][br]Consider [math]P'[/math], on the terminal side of [math]-\theta[/math]. Drag [math]P[/math] around the circle and see what you can say about the relationship between [math]P[/math] and [math]P'[/math].
Based on the graph...
[math]\sin\left(-\theta\right)=[/math]
[math]\cos\left(-\theta\right)=[/math]
[math]\tan\left(-\theta\right)=[/math]
What about the reciprocal functions?
Close

Information: Parity of Trig Functions