Arc length in polar coordinates

This interactive figure dynamically illustrates how the length of an arc along the [color=#0000ff]graph a polar function[/color] is calculated. It also displays an approximate value of the length of such an arc broken up into [i][math]n[/math] [/i]segments. [br][br][b]Note:[/b][br]This figure uses the variable [i]t[/i] instead of the variable [math]\theta[/math]. [br]To enter an exact value in the input box, such as [math]\frac{5\pi}{6}[/math], type "5pi/6".
[i]Developed for use with Thomas' Calculus, published by Pearson.[/i]

Information: Arc length in polar coordinates