Proof Involving Sets Exploration

Fill in the blank of the following proof.
If k ∈ Z, then {n ∈ Z : n | k} ⊆ { n ∈ Z : n | k2 }. Proof. Suppose k ∈ Z. We now need to show {n ∈ Z: n | k} ⊆ {n ∈ Z : n | k2 }. Suppose a ∈ {n ∈ Z : n | k}. Then ii follows that a | k, so there is an integer c for which k = ac. Then k2 = a2 c2 . Therefore k2 = a(ac2 ), and from this the definition of (a)__________________________ gives a | k2 . But a | k means that a ∈ { n ∈ Z : n | k2 }. We have now shown {n ∈ Z : n | k} ⊆ {n∈ Z : n | k2 }.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Your Turn.
Use the methods introduced in this module to prove the following statements Suppose A,B and C are sets. Prove that if A ⊆ B, then A −C ⊆ B −C
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Close

Information: Proof Involving Sets Exploration