1.22 Congruence Criteria for Triangles - SAS

[color=#000000]The [/color][b][u][color=#0000ff]SAS Triangle Congruence Theorem[/color][/u][/b][color=#000000] states that [/color][b][color=#000000]if 2 sides [/color][color=#000000]and their [/color][color=#ff00ff]included angle [/color][color=#000000]of one triangle are congruent to 2 sides and their [/color][color=#ff00ff]included angle [/color][color=#000000]of another triangle, then those triangles are congruent. [/color][/b][color=#000000]The applet below uses transformational geometry to dynamically prove this very theorem. [br][br][/color][color=#000000]Interact with this applet below for a few minutes, then answer the questions that follow. [br][/color][color=#000000]As you do, feel free to move the [b]BIG WHITE POINTS[/b] anywhere you'd like on the screen! [/color]
Q1:
What geometry transformations did you observe in the applet above?
What if we had the SAS criteria for two triangles that shared a side?
Q2:
What geometry transformations did you observe in the diagram above?
What if we had the SAS criteria for two triangles that shared a vertex?
Q2:
What geometry transformations did you observe in the diagram above?
Close

Information: 1.22 Congruence Criteria for Triangles - SAS