Use this worksheet to determine if the Converse of the Pythagorean Theorem is indeed true.
Now move the[b][color=#6aa84f] green slider[/color][/b] to make an [color=#980000][b]obtuse[/b][/color] triangle. (Do not move the sliders for [b]a[/b] and [b]b[/b].) Using the applet, find[b] c[sup]2[/sup][/b].
Look at the value you found for [b]c[sup]2[/sup][/b] and compare it with your classmates values. Do you notice any patterns for the value of [b]c[sup]2[/sup][/b] in an [b][color=#980000]obtuse[/color][/b] triangle?
Now move the[b][color=#6aa84f] green slider[/color][/b] to make an [b][color=#1e84cc]acute[/color][/b] triangle. (Do not move the sliders for [b]a[/b] and [b]b[/b].) Using the applet, find[b] c[sup]2[/sup][/b].
Look at the value you found for [b]c[sup]2[/sup][/b] and compare it with your classmates values. Do you notice any patterns for the value of [b]c[sup]2[/sup][/b] in an [b][color=#1e84cc]acute[/color][/b] triangle?
If a triangle has sides a, b and c such that a[sup]2[/sup] + b[sup]2[/sup] = c[sup]2[/sup] then the triangle is what type of triangle?
If a triangle has sides a, b, and c such that a[sup]2[/sup] + b[sup]2[/sup] > c[sup]2[/sup] then the triangle is what type of triangle?
If a triangle has sides a, b, and c such that a[sup]2[/sup] + b[sup]2[/sup] < c[sup]2[/sup] then the triangle is what type of triangle?