IM Geo.1.17 Practice: Working with Rigid Transformations

[size=150]Quadrilateral [math]ABCD[/math] is congruent to quadrilateral [math]A'B'C'D'[/math]. Describe a sequence of rigid motions that takes [math]A[/math] to [math]A'[/math], [math]B[/math] to [math]B'[/math], [math]C[/math] to [math]C'[/math], and [math]D[/math] to [math]D'[/math].[/size][br][img][/img]
[size=150]Select [b]all[/b] transformations that must take any point [math]A[/math] to any point [math]B[/math].[/size]
[size=150]Triangle [math]ABC[/math] is congruent to triangle [math]A'B'C'[/math]. Describe a sequence of rigid motions that takes [math]A[/math] to [math]A'[/math], [math]B[/math] to [math]B'[/math], and [math]C[/math] to [math]C'[/math].[/size][br][img][/img]
[size=150]A triangle has rotation symmetry that can take any of its vertices to any of its other vertices. [/size][br][br]Select [b]all[/b] conclusions that we can reach from this.
[size=150][img][/img][br][/size]Select [b]all[/b] the angles of rotation that produce symmetry for this flower.
[size=150]A right triangle has a line of symmetry. [/size][br][br]Select [b]all[/b] conclusions that [i]must[/i] be true.
In quadrilateral BADC, AB=AD and BC=DC.
[size=150]The line [math]AC[/math] is a line of symmetry for this quadrilateral.[/size][br] Based on the line of symmetry, explain why angles [math]ACB[/math] and [math]ACD[/math] have the same measure.
Which of these constructions would construct a line of reflection that takes the point [math]A[/math] to point [math]B[/math]?
[size=150]Here is triangle [math]POG[/math]. [/size][br][img][/img]
Match the description of the rotation with the image of POG under that rotation.
Close

Information: IM Geo.1.17 Practice: Working with Rigid Transformations