Type in a quadratic function which parameters and graph can be changed by using sliders. Visualize the special points of the quadratic function as well.[br][br]Explore the construction and learn how to visualize quadratic polynomials with [i][url=https://www.geogebra.org/calculator][i]GeoGebra Calculator Suite[/i][/url][/i]. Then try it yourself by following the instructions below.
[table][tr][td]1. [/td][td]Create a slider for parameter [i]a[/i]. Therefore enter [i]a[/i] into the [i]Input Bar [/i]and press[i] Enter[/i]. The[i] Calculator[/i] [i]Suite[/i] will automatically create a slider.[br][/td][/tr][tr][td]2. [/td][td]Create sliders for parameters [i]b[/i] and [i]c[/i] by following the instructions above.[/td][/tr][tr][td]3.[/td][td]Enter the quadratic function [math]f(x)=ax^2+bx+c[/math] into the [i]Input Bar[/i]. The graph of [i]f(x)[/i] will automatically be displayed in the [i]Graphics View[/i]. [/td][/tr][tr][td]4.[/td][td]Move the sliders [i]a[/i], [i]b[/i] and [i]c[/i] to modify the parameters of the quadratic function. Explore how the graph and the equation of [i]f(x)[/i] adapt to your changes.[br][b]Note:[/b] Click the corresponding disabled [img]https://wiki.geogebra.org/uploads/thumb/3/34/Algebra_hidden.svg/16px-Algebra_hidden.svg.png[/img] [i]Visibility[/i] button of the sliders in the [i]Algebra View [/i]to display them in the [i]Graphics View[/i] as well. You can move them to any position in the [i]Graphics View[/i].[/td][/tr][tr][td]5.[/td][td]Open the context menu by pressing the [img width=20,height=20]https://lh5.googleusercontent.com/m4JJV-BBHdJBfdjRUsylYIuAaCroguwoVEWij8b4Y7X7OjDbyt-wRNegS8oERyKiujYH5_DaJikRPCfwmR-9Xkls8F0FsM8ibx6wiUkL0Bd4HnBOjYLWKi0JIDWLj7WblgWGdnuM[/img][i]More [/i]button next to the input of [i]f(x)[/i] and select [i]Special Points[/i]. The roots, intersection point with the y-axis and extremum of the quadratic function will be displayed in the [i]Algebra[/i] and [i]Graphics View[/i].[/td][/tr][tr][td]6.[/td][td]Move the sliders [i]a[/i], [i]b[/i] and [i]c[/i] again and explore how the special points change as well.[br][/td][/tr][/table]