1) [br]a) Make red vector [math]v=\binom{5}{2}[/math] and green vector [math]w=\binom{-1}{3}[/math][br]b)Make red vector [math]v_1=v[/math] and green vector [math]w_1=w[/math] by clicking on and dragging endpoints.[br][br]Note v and w are vectors equal to [math]v_1[/math] and [math]w_1[/math] respectively , they are parallel and have same magnitude.[br][br]c) place [math]v_1[/math] and [math]w_1[/math] together "nose to tail", endpoint of [math]v_1[/math] to start point of [math]w_1[/math] to connect them [br]c) Place end points of blue vector [math]u[/math] so that [math]u=[/math] [math]v_1[/math] + [math]w_1[/math][br]d) By inspecting diagram, state the components of [math]u[/math][br]e) Check/Justify your answer to d) by writing out vector addition [br]f) Readjust v1 = 2v and w1 =-w to show u=2v - w[br]
1) Using the applet above[br]Move F so that it has position Vector (2,1). [br]Move D so that it has position vector (-4,3). [br]Place the ends of the blue vector so that it become vector FD.[br]State the components of FD.[br]State FD in terms of vectors f and d.[br][br]2) Choose another 2 points for F and D. Share these with your partner then try all the same steps as in q1. Check you each get the same diagrams and same working in jotter.[br][br]3) f is the position vector of F and d is the position vector of D. For F= (4,-1) and D=(-2,5). [br]First find FD by writing it in terms of f and d and substituting in components.[br]Then check using the applet below
1) Using the applet above [br][br][math]u_1=u[/math] and [math]v_1=v[/math], move [math]u_1[/math] and [math]v_1[/math] about to help you visualise and answer the questions below.[br][br]In terms of [math]u[/math] and [math]v[/math] state[br][br]I) AB[br]II) BC[br]III) AD[br]IV) CD[br]V) AC[br]VI) DB
1) Using the applet above [br]List the coordinates of Points A,B,C,D,E,F,G,H,I [br]State the components of: [br][math]\vec{OH}=\vec{AH}=\vec{h}[/math][br][math]\vec{AC}[/math][br]State [math]\vec{BG}[/math] in terms of vectors [math]\vec{b}[/math] and [math]\vec{g}[/math].[br][br]2) Choose another 2 points for and place vector [math]\vec{JK}[/math]between them. Share these with your partner then both try to find components of chosen vector using position vectors[br][br]3) State the components of[math]\vec{EI}[/math][br] State the components of [math]\vec{IE}[/math]