IM Alg2.3.19 Practice: Real and Non-Real Solutions

Use the applet above:
[size=150]Without calculating the solutions, determine whether each equation has real solutions or not.[br][br][math]\text{-}0.5x^2+3x=0[/math][/size]
[math]x^2-4x+7=0[/math]
[math]2x^2-2x-1=0[/math]
[math]\text{-}0.5x^2+3x=3[/math]
[math]x^2-4x+7=5[/math]
[math]2x^2-2x-1=\text{-}4[/math]
The graph shows the equation y=2x²+0.5x-4
[img][/img][br][br]Based on the graph, what number could you put in the box to create an equation that has no real solutions?[br][math]2x^2 + 0.5x - 4 = \boxed{\phantom{100}}[/math]
[size=150]The graph shows the equation [math]y=1.5x^2-3x+2[/math].[/size][br][img][/img][br]Without calculating the solutions, determine whether [math]1.5x^2-3x+2=0[/math] has real solutions.[br]
Show how to solve [math]1.5x^2-3x+2=0[/math]
Write a quadratic equation that has two non-real solutions.
How did you decide what equation to write?
Find the solution or solutions to each equation.
[math]\text{-}2x^2+2x=2.5[/math]
[math]4.5x^2+3x+\frac{1}{2}=0[/math]
[math]\frac{1}{2}x^2+5x=\text{-}14[/math]
[math]\text{-}x^2-1.5x+5=7[/math]
[size=150]Elena and Kiran were solving the equation [math]2x^2-4x+3=0[/math] and they got different answers. Elena wrote[math]1\pm i\sqrt{0.5}[/math], and Kiran wrote [math]1\pm\frac{i\sqrt{8}}{4}[/math]. [/size][br]Are their answers equivalent? Say how you know.
Close

Information: IM Alg2.3.19 Practice: Real and Non-Real Solutions