[size=150]Rotiert (Schieberegler) man die Gerade um die x-Achse, so entsteht ein Kegel.[br]Ermittelt das Volumen des dargestellten Kegels.[br][/size][br]Tipp 1: V=G·h[br]Tipp 2: G ist ein Kreis[br]Tipp 3: stellt den Kegel in Gedanken auf den Boden und stellt euch vor, dieser würde aus Scheiben bestehen.
[size=150]Sei nun ein komplexer Rotationskörper gegeben (s.u.).[br]Ermittelt auch hier das Volumen.[br]- geht dazu analog zum Kegel vor[br]- setzt geschickt an benötigter Stelle die Integralrechnung ein[br]ÜBERLEGT AUCH BEI WAS DIE INTEGRALRECHNUNG HILFT (Analog zur Fläche unter einem Graphen)[br][/size]Denkt daran: irgendwo muss auch quadriert werden.