IM Alg2.2.15 Lesson: The Remainder Theorem

What do you notice? What do you wonder?
[table][tr][td][img][/img][/td][td][img][/img][/td][td][img][/img][/td][/tr][/table][table][tr][td]A. [math]330=33(10)+0[/math][/td][td]B. [math]330=4(82)+2[/math][/td][td]C. [math]330=5(66)+0[/math][/td][/tr][/table]
Consider the polynomial function [math]f(x)=x^4-ux^3+24x^2-32x+16[/math][size=150] where [math]u[/math] is an unknown real number.[/size] [br]If [math]x-2[/math] is a factor, what is the value of[math]u[/math]? Explain how you know.
[size=150]Here are some diagrams that show the same third-degree polynomial, [math]P(x)=2x^3+5x^2+x+10[/math], divided by a linear factor and by a quadratic factor.[/size][size=150][br][table][tr][td][math]\frac{P(x)}{x+3}[/math][/td][td][img][/img][/td][/tr][tr][td][math]\frac{P(x)}{x^2-x}[/math][/td][td][img][/img][/td][/tr][/table][/size]What is the remainder of each of these divisions?
For each division, how does the degree of the remainder compare to the degree of the divisor?[br]
Could the remainder ever have the same degree as the divisor, or a higher degree? Give an example to show that this is possible, or explain why it is not possible.[br]
[size=150]Which of these polynomials could have [math](x-2)[/math] as a factor?[/size]
[size=150]Select one of the polynomials that you said doesn’t have [math](x-2)[/math] as a factor.[/size][br][br]Explain how you know [math](x-2)[/math] is not a factor.[br]
If you have not already done so, divide the polynomial by [math](x-2)[/math]. What is the remainder?[br]
List the remainders for each of the polynomials when divided by [math](x-2)[/math]. How do these values compare to the value of the functions at [math]x=2[/math]?[br]
Close

Information: IM Alg2.2.15 Lesson: The Remainder Theorem