IM Alg1.7.14 Lesson: Completing the Square (Part 3)
[size=150]Elena says, “[math]\left(x+3\right)^2[/math] can be expanded into [math]x^2+6x+9[/math]. Likewise, [math]\left(2x+3\right)^2[/math] can be expanded into [math]4x^2+6x+9[/math].”[/size][br][br]Find an error in Elena’s statement and correct the error. Show your reasoning.
Write each expression in standard form:
[math]\left(4x+1\right)^2[/math]
[math]\left(5x-2\right)^2[/math]
[math]\left(\frac{1}{2}x+7\right)^2[/math]
[math]\left(3x+n\right)^2[/math]
[math]\left(kx+m\right)^2[/math]
Decide if [math]4x^2+12x+9[/math] is a perfect square. If so, write an equivalent expression of the form [math]\left(kx+m\right)^2[/math]. If not, suggest one change to turn it into a perfect square.[br]
Decide if [math]4x^2+8x+25[/math] is a perfect square. If so, write an equivalent expression of the form [math]\left(kx+m\right)^2[/math]. If not, suggest one change to turn it into a perfect square.[br][br]
Find the value of c to make each expression in the left column a perfect square in standard form. Then, write an equivalent expression in the form of squared factors. In the last row, write your own pair of equivalent expressions.
Solve each equation by completing the square:
[math]25x^2+40x=-12[/math]
[math]36x^2-60x+10=-6[/math]
[table][tr][td][size=150]Here are three methods for solving [math]3x^2+8x+5=0[/math]. [br]Try to make sense of each method.[/size][/td][td]Method 1:[/td][/tr][tr][td][/td][td][math]\displaystyle \begin {align}3x^2 + 8x + 5 &= 0\\ (3x + 5)(x + 1) &= 0 \end{align}[/math][br][math]\displaystyle \begin {align} x = \text- \frac53 \quad \text{or} \quad x = \text-1\end {align}[/math][br][/td][/tr][tr][td]Method 2:[/td][td]Method 3:[/td][/tr][tr][td][math]\displaystyle \begin {align} 3x^2 + 8x + 5 &= 0\\ 9x^2 + 24x + 15 &= 0\\ (3x)^2 + 8(3x) + 15 &= 0\\ U^2 + 8U + 15 &= 0\\ (U+5)(U+3) &= 0 \end{align}[/math][br][math]\displaystyle \begin {align} U = \text-5 \quad &\text{or} \quad U = \text-3\\3x = \text-5 \quad &\text{or} \quad 3x = \text-3\\ x = \text- \frac53 \quad &\text{or} \quad x = \text-1 \end{align}[/math][br][/td][td][math]\displaystyle \begin {align} 3x^2 + 8x + 5 &= 0\\ 9x^2 + 24x + 15 &= 0\\9x^2 + 24x + 16 &= 1\\(3x + 4)^2 &= 1 \end{align}[/math][br][math]\displaystyle \begin {align} 3x+4 = 1 \quad & \text{or} \quad 3x+4 = \text-1\\x = \text-1 \quad & \text{or} \quad x = \text- \frac53 \end {align}[/math][/td][/tr][/table][br][size=150]Once you understand the methods, use each method at least one time to solve these equations.[/size][br][br][math]5x^2+17x+6=0[/math]
[math]6x^2+19x=-10[/math]
[math]8x^2-33x+4=0[/math]
[math]8x^2-26x=-21[/math]
[math]10x^2+37x=36[/math]
[math]12x^2+20x-77=0[/math]
Find the solutions to [math]3x^2-6x+\frac{9}{4}=0[/math]. Explain your reasoning.
IM Alg1.7.14 Practice: Completing the Square (Part 3)
[size=150]Select [b]all[/b] expressions that are perfect squares.[/size]
Find the missing number that makes the expression a perfect square. Next, write the expression in factored form.
[math]49x^2 - \underline{\hspace{.5in}} x + 16[/math]
[math]36x^2 + \underline{\hspace{.5in}} x + 4[/math]
[math]4x^2 - \underline{\hspace{.5in}} x + 25[/math]
[math]9x^2 + \underline{\hspace{.5in}} x + 9[/math]
[math]121x^2 + \underline{\hspace{.5in}} x + 9[/math]
Find the missing number that makes the expression a perfect square. Next, write the expression in factored form.
[math]9x^2 + 42x + \underline{\hspace{.5in}}[/math]
[math]49x^2 - 28x +\underline{\hspace{.5in}}[/math]
[math]25x^2 + 110x + \underline{\hspace{.5in}}[/math]
[math]64x^2 - 144x +\underline{\hspace{.5in}}[/math]
[math]4x^2 + 24x + \underline{\hspace{.5in}}[/math]
Find the value of c to make the expression a perfect square. Then, write an equivalent expression in factored form.
[size=150]Solve [math]4x^2+4x=3[/math] by completing the square.[/size]
[size=150]Solve [math]25x^2-30x+8=0[/math] by completing the square.[/size]
[size=150]For each function [math]f[/math], decide if the equation [math]f(x)=0[/math] has 0, 1, or 2 solutions. Explain how you know.[/size][br][br][size=100]A[/size][br][img][/img]
B[br][img][/img]
C[br][img][/img]
D[br][img][/img]
E[br][img][/img]
F[br][img][/img]
Solve each equation.
[math]p^2+10=7p[/math]
[math]x^2+11x+27=3[/math]
[math]\left(y+2\right)\left(y+6\right)=-3[/math]
[size=150]Which function could represent the height in meters of an object thrown upwards from a height of 25 meters above the ground [math]t[/math] seconds after being launched?[/size]
A group of children are guessing the number of pebbles in a glass jar. The guesses and the guessing errors are plotted on a coordinate plane.
[img][/img][br]Which guess is furthest away from the actual number?
How far is the furthest guess away from the actual number?