
-
Mittelwerte
-
1. Wiederholen
- Gruppengrößen vergleichen - Dezimalzahlen
- Der Median
- Weitspringen - Dezimalzahlen
- Ⓔ Augenfarben
-
2. Entdecken
- Papierflieger-Wettfliegen
- Knobelspaß
-
3. Üben
- Sparschwein
- Arithmetisches Mittel berechnen
- Welche Zahl fehlt?
- Würfeldurchschnitt
- Wasserverbrauch
This activity is also part of one or more other Books. Modifications will be visible in all these Books. Do you want to modify the original activity or create your own copy for this Book instead?
This activity was created by '{$1}'. Do you want to modify the original activity or create your own copy instead?
This activity was created by '{$1}' and you lack the permission to edit it. Do you want to create your own copy instead and add it to the book?
Mittelwerte
FLINK-Team, Jul 3, 2023

Table of Contents
- Wiederholen
- Gruppengrößen vergleichen - Dezimalzahlen
- Der Median
- Weitspringen - Dezimalzahlen
- Ⓔ Augenfarben
- Entdecken
- Papierflieger-Wettfliegen
- Knobelspaß
- Üben
- Sparschwein
- Arithmetisches Mittel berechnen
- Welche Zahl fehlt?
- Würfeldurchschnitt
- Wasserverbrauch
Gruppengrößen vergleichen - Dezimalzahlen

5 Kinder sind gemeinsam 680 cm groß.
Wie groß ist ein Kind durchschnittlich?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Jedes Kind ist durchschnittlich 136 cm groß.
680 : 5 = 136
4 Kinder haben folgende Körpergrößen:
143 cm, 144 cm, 146 cm, 165 cm.
Berechne das arithmetische Mittel der Körpergrößen.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
143 + 144 + 146 + 165 = 598
598 : 4 = 149,5
Jedes der 4 Kinder ist durchschnittlich 149,5 cm groß.
Ashab und Emira unterhalten sich.
Ashab behauptet: "Wenn in die 1a 24 Kinder und in die 1b 23 Kinder gehen, dann gehen durchschnittlich 23,5 Kinder in eine Klasse."
Emira meint: "Das geht doch gar nicht! Es kann nur eine ganze Anzahl an Kinder in eine Klasse gehen."
Begründe, warum beide Kinder recht haben.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Durchschnittlich bedeutet, dass die Anzahl der Kinder gerecht auf die beiden Klassen aufgeteilt wurde. Das heißt aber nicht, dass man die Anzahl der Kinder auch so aufteilen kann.
In diesem Fall kann die Anzahl der Kinder nicht 23,5 sein. Es müssen also in eine Klasse 24 Kinder und in die andere Klasse 23 Kinder gehen.
Deshalb haben Ashab und Emira recht.
☆ Die jüngste Lehrperson verlässt das Konferenzzimmer. Dadurch steigt das arithmetische Mittel des Alters der Lehrpersonen im Konferenzzimmer.
Die jüngste Lehrpersonen geht in eine Klasse. Dadurch steigt das arithmetische Mittel des Alters aller Personen in der Klasse.
Wie kann das funktionieren?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Da die Lehrperson die Jüngste im Konferenzzimmer ist, steigt das arithmetische Mittel des Alters im Konferenzzimmer nach ihrem Verlassen.
Da die Lehrperson in der Klasse die Älteste ist, steigt das arithmetische Mittel des Alters der Personen in der Klasse.
(Dieser Effekt wird Will Rogers Phänomen genannt.)
Papierflieger-Wettfliegen

Du kannst die Aufgaben gleich hier lösen oder dazu das Dokument unten ausgedruckt verwenden.
Um die Fragen zu beantworten, setze die Werte auf den Anfangszustand zurück, indem du auf den Button "Zurücksetzen" klickst.
★☆☆
Das arithmetische Mittel der Original-Werte beträgt 5,25.
Stelle die Flugweite von Papierflieger 5 auf 9 m.
Beschreibe, wie sich das arithmetische Mittel verändert hat.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Das arithmetisch Mittel wird größer.
★☆☆
Das arithmetische Mittel der Original-Werte beträgt 5,25.
Verändere alle Werte in der Tabelle, sodass das arithmetische Mittel größer wird.
Wie kannst du dabei vorgehen?
★★☆
Das arithmetische Mittel der Original-Werte beträgt 5,25.
Verändere die ersten 4 Werte in der Tabelle, sodass das arithmetische Mittel kleiner wird.
Beschreibe, wie du dabei vorgehen kannst.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Es gibt verschiedene Möglichkeiten:
- Es können die ersten 4 Werte jeweils verkleinert werden.
- Es können manche Werte vergrößert und manche verkleinert werden. Die Summe der 4 Werte muss aber kleiner sein, als die Summe der ursprünglichen 4 Werte.
★★☆
Das arithmetische Mittel der Original-Werte beträgt 5,25.
Verändere einen Wert in der Tabelle, sodass das arithmetische Mittel kleiner wird.
Beschreibe, wie du dabei vorgehen kannst.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Es muss ein Wert verkleinert werden.
★☆☆
Der Median der Original-Werte beträgt 4,5.
Stelle die Flugweite von Papierflieger 1 auf 7 m.
Beschreibe, wie sich der Median verändert hat.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Der Median ist der Wert in der Mitte einer geordneten Urliste. Dieser Wert wird nicht geändert.
Dadurch ändert sich der auch Median nicht.
★☆☆
Der Median der Original-Werte beträgt 4,5.
Vergrößere den größten Wert in der Tabelle.
Beschreibe, wie sich der Median ändert.
★☆☆
Der Median der Original-Werte beträgt 4,5.
Verändere die Flugweiten der Papierflieger 4 und 5 in der Tabelle.
Beschreibe, wie sich der Median ändert.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Wenn die Flugweiten der Papierflieger 4 und 5 vergrößert werden, dann vergrößert sich auch der Median.
Wenn die Flugweiten der Papierflieger 4 und 5 verkleinert werden, dann verkleinert sich auch der Median.
★☆☆
Der Median der Original-Werte beträgt 4,5.
Was bedeutet das?
★★☆
Der Median der Original-Werte beträgt 4,5.
Verkleinere den kleinsten Wert in der Tabelle.
Beschreibe, wie sich der Median ändert.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Der Median ändert sich nicht.
Der Median wird nicht von Ausreißern (= sehr große oder sehr kleine Zahlen, die nicht in die Datenreihe passen) beeinflusst.
★★☆
Stelle die Flugweiten in der Tabelle so ein, dass der Median um mindestens 1 m kleiner ist als das arithmetische Mittel.
Beschreibe, wie du vorgehst.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Es gibt kein richtiges oder falsches Ergebnis. Wichtig ist, dass du deine Lösung begründen kannst.
Mögliche Überlegungen sind:
Änderst du alle Flugweiten oder nur einen?
Machst du die Flugweiten größer oder kleiner?
★★☆
Stelle die Flugweiten in der Tabelle so ein, dass der Median und das arithmetische Mittel gleich groß sind.
Beschreibe, wie du vorgehst.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Es gibt kein richtiges oder falsches Ergebnis. Wichtig ist, dass du deine Lösung begründen kannst.
Mögliche Überlegungen sind:
Änderst du alle Flugweiten oder nur einen?
Machst du die Flugweiten größer oder kleiner?
★★★
Beim Papierflieger-Wettfliegen sind alle 8 Papierflieger genau 5 m weit geflogen.
Der Median und das arithmetische Mittel betragen jeweils 5.
Papierflieger 1 darf noch einmal fliegen. Die neue Flugweite beträgt 15 m.
Der neue Median lautet 5, das neue arithmetische Mittel beträgt nun 6,25.
Warum ändert sich das arithmetische Mittel und warum bleibt der Median gleich?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font colorAuto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link [ctrl+shift+2]
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Das arithmetische Mittel berechnet sich aus der Summe aller Werte durch die Anzahl der Werte.
Verändert sich ein Wert, so ändert sich auch das arithmetische Mittel. Das gilt auch für Ausreißer (= sehr große oder sehr kleine Zahlen, die nicht in die Datenreihe passen).
Der Median ist der Wert in der Mitte einer geordneten Urliste.
Dieser ändert sich bei der angegebenen Datenreihe nicht. Der Median wird nicht von Ausreißern beeinflusst.
Begleitfragen-Dokument: Papierflieger-Wettfliegen
Sparschwein

FLINKe Grüße
Saving…
All changes saved
Error
A timeout occurred. Trying to re-save …
Sorry, but the server is not responding. Please wait a few minutes and then try to save again.