8.1 Displacement, Velocity, and Acceleration as Functions of Time

[size=200][b][color=#0000ff]What is displacement?[br][/color][/b][/size][br][size=150][b]Displacement (s)[/b] of a particle and a fixed point is the distance between the particle and the nearest fixed point measured in a certain direction.[br][/size][i][color=#1e84cc][size=150][b]Here is a simpler and easier to understand way to explain the displacement, velocity and acceleration based on the direction of motion of the particle relative to the fixed point O: [/b][/size][/color][/i][size=150][color=#ff0000][b]Displacement:[/b][br][/color][/size][size=150][list][*][size=150][b]Negative displacement[b] (s<0)[/b]: The particle is to the left of point O.[/b][/size][/*][/list][list][*][size=150][b]Zero displacement[b] (s=0): The particle is exactly at point O.[/b][/b][/size][/*][/list][list][*][size=150][b]Positive displacement (s>0): The particle is to the right of point O.[/b][br][/size][/*][/list][/size][justify][color=#ff0000][b][/b][size=150][b]Velocity:[/b][br][/size][/color][/justify][size=150][i][list][*][size=150][b]Negative velocity[b] (v<0)[/b]: The particle moves to the left.[/b][/size][/*][/list][list][*][size=150][b]Zero [b]velocity [/b][b](v=0): The particle remain still.[/b][/b][/size][/*][/list][list][*][size=150][b]Positive velocity (v>0): [b]The particle moves to the right.[/b][/b][br][/size][/*][/list][/i][/size][size=150][color=#ff0000][b]Acceleration:[/b][/color][/size][i][list][*][b][size=150]Negative acceleration[b] (a<0)[/b]: The particle's velocity is [b]increasing[/b] over time (the particle is speeding up).[/size][/b][/*][/list][size=150][list][*][b]Zero [b]acceleration[/b][b](v=0): The particle's velocity is [b]constant[/b] (either at its maximum or minimum).[/b][/b][/*][/list][/size][/i][i][size=150][list][*][i][size=150][b]Positive acceleration[b] (a>0)[/b]: The particle's velocity is [b]decreasing[/b] over time (the particle is slowing down). [/b][/size][/i][/*][/list][/size][/i]

Інформація: 8.1 Displacement, Velocity, and Acceleration as Functions of Time